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Abstract— A general procedure using the Method of Lines
for the analysis of waveguide-to-microstrip and waveguide-
to-coplanar line transitions is described. Using two crossed
two-dimensional discretization line systems instead of a full
three-dimensional discretization allows to reduce the numer-
ical effort. This concept is combined with the concept of
impedance/admittance transformation. The described rela-
tions are also useful for other applications. The proposed algo-
rithm is validated by comparison to measured and theoretical
results.

I. I NTRODUCTION

Waveguide-to-microstrip and waveguide-to-coplanar line
transitions are essential parts of microwave circuits. There
are several types of such transitions, to the most-known be-
long: a ridged-waveguide taper, a finline taper and an E-
plane probe. A new transition type with a rectangular patch
instead of a strip probe, which was proposed by Machac
et al. [1] has significantly broader bandwidth. This new
transition type can occur in two versions: microstrip and
coplanar line (Fig. 1).

The Method of Lines, which was previously success-
fully applied to the analysis of rectangular waveguide junc-
tions using two one-dimensional cross line systems [2] and
impedance/admittance transformation concept [3], is now
extended to the analysis of waveguide-to-microstrip and
waveguide-to-coplanar line transitions, for which normally
three-dimensional discretizations are required. The use of
two crossed two-dimensional line systems for modeling a
central region instead of a full three-dimensional discretiza-
tion allows to significantly reduce the numerical effort. Ad-
ditionally, to reduce the total number of lines needed for
modeling the central region, a nonequidistant discretization
can be used.

This procedure will be demonstrated with the example
of the waveguide-to-microstrip transition given in Fig. 1a.
The procedure for the analysis of waveguide-to-coplanar
line transition is analogous.

For the structures depicted in Fig. 1 there are two possi-
bilities of analysis – with the subdivision on two- or three-
ports junction. In case of the two-ports analysis, more lines
are needed to model the central region, but there are less
impedance/admitance transformations performed and lower
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Fig. 1: Rectangular waveguide-to-microstrip (a) and waveguide-
to-coplanar line (b) transitions with two possible discretization
schemes.

programming effort is required. The choice of the used sub-
division method depends on the distance between the port
P2 (Fig. 1a) and the backshort. In case when this distance
is small, the two-ports analysis is more efficient, otherwise
it is worth to use the three-ports analysis.

The second type of the analysis (three-port) as a more
general will be described as well. However the results pre-
sented here were obtained using the two-port analysis.

II. T HEORY

The discretization scheme for one of the discretization
line systems (discretization lines in z direction) in the transi-
tion region is shown in Fig. 2. The discretization scheme for
the other discretization line system (in y direction) is com-
pletely analogous. Details concerning discretization way
were presented in [4]. The side walls of the connecting
waveguides must be electric boundaries, therefore relations
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Fig. 2: Cross section of the transition region with discretization
points.

of the field at the inner side of the ports P1, P2 and P3 can
be described by short circuit matrix parameters: ĤP1

−ĤP2

ĤP3

 =

 ŷ
P1

P1 ŷ
P2

P1 ŷ
P3

P1

ŷ
P1

P2 ŷ
P2

P2 ŷ
P3

P2

ŷ
P1

P3 ŷ
P2

P3 ŷ
P3

P3


 ÊP1

ÊP2

ÊP3

 (1)

The overlined values are determined in transformed do-
main and the hat (̂ ) stands for supervectors and super-

matrices [4]. The vectorŝH andÊ contain tangential field
components, e. g. for the port P3

ĤP3 =

−Ĥ
P3

x

Ĥ
P3

y

 ÊP3 =

 Ê
P3

y

Ê
P3

x

 (2)

The admittance submatrices in (1) are obtained by short cir-
cuiting the ports. This procedure will be explained with
three submatrices of (1) as examples.

A. Main diagonal submatrices

For the calculation of̂y
P1

P1 the ports P2 and P3 have to be

short circuited. Then̂y
P1

P1 is the input admittance matrix. In
the example of Fig. 1, the ports are connected via a concate-
nation of three different sections. In each of these sections,
the tangential fields at the ends (A, B) of a section (Fig. 3)
can be described by [4][

ĤA

−ĤB

]
=
[

ŷ1 ŷ2

ŷ2 ŷ1

][
ÊA

ÊB

]
(3)

where
ŷ1 = Ŷ0/tanh(Γ̂d) ŷ2 =−Ŷ0/sinh(Γ̂d) (4)

Γ is a propagation constants,̂Y0 is a characteristic admit-
tance matrix andd = k0d is a normalized distance between
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Fig. 3: Division of a structure into sections.

the planes. Hence, the admittance at the one end of an ar-
bitrary sectionk can be obtain from the admittance at the
second end of this section by

Ŷ
k

A = ŷ
k

1 − ŷ
k

2

(
ŷ
k

1 + Ŷ
k

B

)−1

ŷ
k

2 (5)

Transitions between sections can be calculated by

Ŷ
k−1

B = T̂−1
Hk−1

Jct
k−1

(
Jc
kT̂Ek

(
Ŷ
k

A

)−1

T̂−1
Hk

Jct
k

)−1

Jc
k−1T̂Ek−1

(6)
where the eigenvector matricesTE,H [4] transform the field
from the original to the transform domain, matricesJc re-
duce the field in the original domain to the common part
on both sides of the transition. Due to the electric wall at
the end, the input admittance matrix at the last subportk

obtained from (3) becomeŝy
k

1 . Transforming the admit-
tance with (5) and (6) through allk sections (in the example
shown in Fig. 1k = 3...1) gives the input admittance ma-

trix ŷ
P1

P1.

The same procedure holds for the submatricesŷ
P2

P2 (in this

case ports P1 and P3 must be short circuited) andŷ
P3

P3 (ports
P1 and P2 are short circuited).

B. Off-diagonal submatrices

For the calculation of the matriceŝy
P2

P1 andŷ
P1

P2 the op-
posite transformation direction as for the main diagonal ma-
trices must be used.

With the input admittance matrix, the before calculated
admittances and (3), all the field vectors at the subports can
be computed using the following matching equations:

Ê
k

B =
(
ŷ
k

2

)−1
(

Ŷ
k

A − ŷ
k

1

)
Ê
k

A (7)

−Ĥ
k

B = ŷ
k

2 + ŷ
k

1

(
ŷ
k

2

)−1
(

Ŷ
k

A − ŷ
k

1

)
Ê
k

A (8)

Ĥ
k

A = T̂−1
Hk

Jct
k T̂Hk−1Ĥ

k−1

B (9)

Ê
k

A =
(

Ŷ
k

A

)−1

Ĥ
k

A (10)

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



From the magnetic field obtained at the last subportĤ
3

B,

which is proportional to the input electric field̂EA, the ma-

tricesŷ
P2

P1 andŷ
P1

P2 can be obtained.

The other off-diagonal matrices represent coupling be-
tween ports.
Calculating these matrices will be explained with the sub-

matrix ŷ
P1

P3 as an example. Because of electric walls (ports
P2 and P3 are short circuited), the tangential electric com-
ponents produce only zero electric field. For this reason
for the coupling from port P1 to port P3 only the tangential
magnetic components are responsible

ĤP3 =

[
ĤP3

x

ĤP3
z

]
(11)

The calculations have to be done in parts, because the port
P3 must be divided according to the sidewalls areas intok
subports. The magnetic or electric field in a plane at an
arbitrary positionz between two subportsAk (z = 0) and
Bk z = dk of a sectionk can be computed from the fields
at the subportsAk andBk using the following formula

F̂
(
zki
)

= Λd
AkF̂

k

A + Λd
BkF̂

k

B (12)

F̂ is the vector of the transversal electric or magnetic com-

ponents. Both partŝF
k

A andF̂
k

B are caused by fields at the
port P1. The diagonal matricesΛd

Ak andΛd
Bk are given by

Λd
Ak =

sinh
(
Γk
z z
)

sinh
(
ΓzdABk

) Λd
Bk =

sinh
(
Γk
z z
)

sinh
(
ΓzdABk

) (13)

with z = dk−z anddk = k0dk. dk is the distance between
the portsAk andBk, Γk

z is a propagation constant.

The field componentHP3
x at the port P3 can be obtained by

HP3
x

(
zk
)

= TP3
Hx

(
Λd

AkĤAk + Λd
BkĤBk

)
(14)

where [5]

TP3
Hx

=
1
8

(9THxN −THxN ) (15)

are the values of the field on the subports extrapolated
from the values of the last and last but one rows ofT̂P3

Hx.
Discretizing the field component (14) at the discretization
pointszk of the port P3 and collecting fields of all subports
P3k, yields

ĤP3
x =


TP3

Hx
Λd

A1ŶAA1 + TP3
Hx

Λd
B1ŶAB1

...

TP3
Hx

Λd
AkŶAAk + TP3

Hx
Λd

BkŶABk

EP1=ŶP1
xP3ÊP1

(16)

where

ĤAk = ŶAAkÊA ĤBk = ŶABkÊA (17)

The field vectorsĤAk and ĤAk caused byÊA were
already calculated using (7)-(10). Eq. (16) is the upper part
of the vector of (11).

The tangential magnetic field componentHP3
z can be ob-

tain from

Hzn

(
zk
)

= j
[
D̂•x − D̂◦y

]
TEÊ

(
zk
)

(18)

whereD̂•x, D̂
◦
y are central differences in one row or one col-

umn.
To obtain the valuesHP3

z at the port P3, similar proce-
dure as forHP3

x is required. The last two rows needed for
extrapolation process can be obtained from

Hz

(
zk
)

= j
[
D̂•xTEyn − D̂◦ynTExn,n−1

]
Ê
(
zk
)

(19)

whereTEy , TEx are parts ofTE which correspond to the
kind of the field components, and these two parts are fur-
ther partitioned according to then rows of the discretization
points (see Fig. 2).̂D◦ynTExn,n−1 is the difference ofTExn

andTExn−1 .
Discretizing the field componentHP3

z at the discretiza-
tion pointszk of the port P3 and collecting the fields of all
subportsP3k, yields

ĤP3
z =


TP3

Hz
Λd

A1V̂AA1 + TP3
Hz

Λd
B1V̂AB1

...

TP3
Hz

Λd
AkV̂AAk + TP3

Hz
Λd

BkV̂ABk

EP1=ŶP1
zP3ÊP1

(20)
where

ÊAk = V̂AAkÊA ÊBk = V̂ABkÊA (21)

The field vectorŝEAk andÊAk which are proportional to

ÊA were determined earlier in this subsection. Eq. (20) is
the lower part of the vector of (11).

The submatrix̂yP1
P3 can be written as follows

ŷP1
P3 =

[
ŷP1

xP3

ŷP1
zP3

]
(22)

Since this matrix is in the original domain, it must be trans-
formed using the transformation matrix̂TP3

H

ŷ
P1

P3 =
(
T̂P3

H

)−1

ŷP1
P3 (23)

It should be mentioned, that before multiplying, the com-
ponents ofŷP1

P3 must be ordered in the same way as the
components in the transformation matrix.
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In an analogous way the remaining submatrices can be
determined. Knowing all submatrices of (1), the input ad-
mittance matrix can be calculated. The admittance matrices
at the inner side of the ports can be defined by

ĤP1 = ŶP1ÊP1 − ĤP2 = ŶP2ÊP2 ĤP3 = ŶP3ÊP3

(24)
Introducing (24) into (1) and combining the ports admit-
tance matrices, leads (for the port P3) to

ŶP3 = ŷ
P3

P3 + Ŷ
P1P2

P3

(
Ŷ

P1P2

P1P2

)−1

Ŷ
P3

P1P2 (25)

where

Ŷ
P1P2

P1P2 =

[
ŷ

P1

P1 − ŶP1 ŷ
P2

P1

ŷ
P1

P2 ŷ
P2

P2 − ŶP2

]
(26)

Ŷ
P3

P1P2 =
[

ŷ
P3

P1 ŷ
P3

P2

]t
Ŷ

P1P2

P3 =
[

ŷ
P1

P3 ŷ
P2

P3

]
(27)

With the input admittance matrix and the source mode, the
fields at all ports can be obtained, and from these fields, the
scattering parameters can be computed.

III. R ESULTS

To validate the proposed method of analysis, the reflec-
tion coefficient of the structure showed in the Fig. 1a have
been calculated and compared with experimental [1] and
theoretical result using FDTD + modal BC [6].

The waveguide type WR90 was examined and the sub-
strate with permittivityεr = 2.35 was used.

The reflection coefficient obtained with the method de-
scribed in this paper is showed in the Fig. 1. This result
is with good agreement with experimental and theoretical
results. The slightly lower reflection coefficient as for the
measured result is obtained, because an ideal metal and sub-
strate were assumed.

IV. CONCLUSION

A new general method for the efficient analysis of
waveguide-to-microstrip and waveguide-to-coplanar line
transitions is proposed and described. The use of two-
dimensional discretization with crossed lines in the central
region instead of three-dimensional discretization allows to
calculate such structures very efficient. The admittance
transformation concept used in this method is numerically
stable and gives correct results even for long sections. An
extension of this method to other types of waveguide tran-
sitions is very easy.
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Fig. 4: Magnitude of the reflection coefficient of the waveguide-
to-microstrip transition. The dimensions of the structure (descrip-
tion in Fig. 1a) are:a = 22.86mm,b = 10.16mm,h = 0.794mm,
w = 2.3mm,Lp = 6mm,wp = 12 mm,dp = 3.16mm,d = 5.3mm,
ac = 8.0mm,bc = 5.0mm
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